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Abstract
We consider a one-dimensional wire in Gaussian random potential. By
treating the spatial direction as imaginary time, we construct a ‘minimal’ zero-
dimensional quantum system such that the local statistical properties of the
wire are given as products of statistically independent matrix elements of the
evolution operator of the system. The space of states of this quantum system
is found to be a particular non-unitary, infinite-dimensional representation of
the pseudo-unitary group, U(1, 1). We show that our construction is minimal
in a well-defined sense, and compare it to the supersymmetry and Berezinskii
techniques.

PACS numbers: 03.65.Fd, 71.23.An, 73.63.Nm

1. Introduction

The problem of finding statistical properties of disordered one-dimensional wires has been
successfully treated by a number of different techniques (see [1] and references therein, also
[2–4]). By interpreting the x-coordinate as imaginary time, the problem can be reduced to the
study of an ensemble of time-dependent Hamiltonians acting on some space of states. At each
point in time, in each realization of disorder, the Hamiltonian operator lies in a Lie algebra of
operators on the space—the so-called dynamical algebra. In this paper we aim to develop this
idea into a framework in which models are defined in terms of a dynamical algebra, and its
action on a given linear space. In the supersymmetric treatment one obtains a supersymmetric
Fock space and a Lie super-algebra [4, 5]. Other techniques for the one-dimensional wire do
not explicitly involve the action of such a dynamical algebra on a space of states, though such
structure can be seen implicitly. The Berezinskii technique [3] is one such example, and we
discuss it in relation to the framework we develop.

Within this framework we define a notion of minimality in terms of the dynamical algebra,
the space on which it acts and a set of physical quantities to be studied. We construct such
a minimal description which contains complete information on the local statistical properties
of the wire. The choice of physical properties is important—by restricting ourselves to local
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properties only we are able to construct a simpler model than would be possible if we were
to insist on a full knowledge of all the statistical properties. The supersymmetric treatment
[5, 6] is not minimal for the local statistical properties in the sense we define, nor indeed for
any larger set. It can be shown that the space we construct is isomorphic to a subspace of the
supersymmetric Fock space, though our construction is direct and does not depend upon this.

We hope that the construction we present is generic enough to be applicable to other
disordered systems which are not so well understood. In more complicated systems where a
localization–delocalization transition occurs knowledge of the local properties is enough to
determine which state the system is in. The hope is that through focusing on the simplest
set of physical characteristics and by adapting the approach developed in this paper, it may
be possible to obtain a construction which can more readily be analysed than those which
presently exist.

2. The minimal construction for the local properties

2.1. Outline of the framework

In the general theory of disordered systems, one begins with an ensemble of disorder
realizations V in d-dimensional space, with a given probability distribution. One way to
analyse such a system is to interpret one spatial direction as imaginary time, τ , and thereby
construct an associated (d − 1)-dimensional quantum system. In this case each particular
realization of disorder corresponds to a time-dependent Hamiltonian, V ↔ HV (τ), acting
on the space of states of the quantum system. Physical quantities are given by expressions
involving matrix elements of the evolution operator, UV , in this space.

An additional structure is the ‘dynamical algebra’, g which acts on the space of states,
and is the linear closure (with respect to commutators) of all possible Hamiltonian operators,
at each point in time, in each disorder realization. We use the representation theory of g as a
powerful tool to simplify our analysis.

For example, for the (d = 1) disordered wire, we study the Dirac Hamiltonian in the
presence of Gaussian disorder,

H = −iσ3
d

dx
+ V (x) (1)

where V assigns a 2 × 2 Hermitian matrix to each point,

V (x) =
(

α z

z∗ β

)
α, β ∈ R, z ∈ C. (2)

Interpreting x as imaginary time τ , the equation for UV has the form

dUV

dτ
(τ ) = −iσ3V (τ)UV (τ) : UV (τ0) = 1. (3)

So we can view HV (τ) = −iσ3V (τ) as a zero-dimensional Hamiltonian. Since V (τ) is
Hermitian, iσ3V (τ) lies in the u(1, 1) algebra, which is the dynamical algebra for this system.
In this case UV is nothing but the transfer matrix for the original Hamiltonian.

Next we need to construct a space on which the dynamical algebra acts. The choice
of space will depend upon what physical quantities are to be studied, according to the
requirement that in an appropriate space these quantities will be given by products of
statistically independent matrix elements of UV in this space. The statistical independence of
these expressions will be important when calculating the averages of the physical quantities
over disorder realizations. This is illustrated by the following example for the one-
dimensional wire.
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In order to perform the averaging, we introduce a probability measure on the space of
disorder matrices,

P(V (x)) = A exp[−2lf (α2 + β2) − 2lb|z|2] (4)

and assume the disorder to be spatially delta-correlated. Here lf and lb are the forward and
backward scattering lengths, respectively.

We will be interested in the reflection amplitudes for a particle in the wire. The amplitude
of reflection for a left-moving particle, rL, can be written in terms of the components of the
matrix UV :

rL(τ ) = (UV (τ))12

(UV (τ))22
. (5)

The natural space on which HV acts is the space of two-component complex vectors (the spin-
1/2 representation). From (5) the left reflection amplitude is a ratio of two matrix elements of
UV on this space.

Averaging UV over disorder realizations to obtain an averaged evolution operator, Uav, is
straightforward. However, when working in the natural (spin-1/2) representation, averaging
the expression for rL is still non-trivial1, as it is the ratio of two statistically dependent matrix
elements of UV . Rather than using the natural representation, we therefore look for an
associated representation of the dynamical algebra, where the expression for rL in terms of
matrix elements of UV involves only statistically independent products, and hence its averaged
value can be written directly in terms of matrix elements of Uav—such a representation is
constucted in the next subsection.

The analysis for the disordered wire above motivates a general framework for the treatment
of disordered systems, given by a dynamical algebra which contains all possible disorder
Hamiltonians, a set of physical quantities to be studied, and a representation of the dynamical
algebra which is appropriate for this set of quantities, in the sense defined above. We call
such a construction minimal with respect to the set of physical quantities if there is no strict
sub-representation which is also appropriate for this set. In our treatment (section 2.3), we
construct a representation of the dynamical algebra directly from the requirement that it is
minimal with respect to the local properties of the wire.

2.2. Construction for the left reflection amplitude

We use the following notation for a basis of (the complexification of) the u(1, 1) algebra:

L0 = 1

2

(
1 0
0 −1

)
L+ =

(
0 1
0 0

)
L− =

(
0 0
1 0

)
(6)

along with the central element, I. Since u(1, 1) is the dynamical algebra for the disordered
wire, in each realization of disorder the evolution operator UV will lie in the U(1, 1) group.

To extract the left reflection amplitude from the evolution operator, we note the relation

UV (τ,−∞)

(
0
tL

)
=

(
rL

1

)
(7)

where rL, tL are the amplitudes of reflection and transmission for a left-moving particle at
position τ . Hence the evolution operator can be written as

UV (τ,−∞) =
(

eiφL/t∗L rL/tL

r∗
L eiφL/t∗L 1/tL

)
(8)

where φL is some phase undetermined by the above relation.
1 Of course, rL averages to zero due to uniform averaging over its phase; here it is simply used as an illustration.
Later we will consider moments of the square modulus of rL, which are non-trivial.
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The following triangular decomposition of UV (τ,−∞) in terms of algebra elements is
useful:

UV (τ,−∞) = e2iθ1L0 eRL+ e2 ln T L0 eRL− e2iθ2L0 eiφL(L0+I)/2 (9)

where rL = R e2iθ1 and tL = T ei(θ1+θ2) for real R, T , θ1 and θ2. In order to simplify the notation,
when we consider the action of the U(1, 1) group (or algebra) in a given representation, we
shall not explicitly denote the mapping from the group (or algebra) to the space of linear
operators acting on the representation. Although we will work with a number of different
representations of U(1, 1) in what follows, the implied action of U(1, 1) will be made clear
by the context.

We now construct a representation, T, of U(1, 1), such that the left reflection amplitude
can be written as a matrix element of the evolution operator in this representation:

rL = 〈ϕ|UV (τ,−∞)|χ〉 : |χ〉 ∈ T , 〈ϕ| ∈ T ∗. (10)

Consider the action of UV in the representation T. The matrix element (10) must be
independent of T , θ2 and φL, and so we chose a state |χ〉 such that the first (rightmost) four
terms in the decomposition (9) acts trivially on it:

L0|χ〉 = L−|χ〉 = I|χ〉 = 0. (11)

Consider the representation generated by applying algebra elements to this state. The
condition L+|χ〉 �= 0 is enough to specify the representation uniquely (if L+|χ〉 = 0, the trivial
representation is obtained). From (11), |χ〉 is a lowest weight vector with L0-weight zero.
Henceforth we denote it by |0−〉, and the representation it generates by T −

0 . The representation
is non-unitary and has infinite dimension (see [7], section 6.4). It is spanned by the vectors
|n−〉 = (L+)

n|0−〉, with L0 weights n � 0.
From (9) we have

UV (τ,−∞)|0−〉 = e2iθ1L0 eRL+ |0−〉 (12)

=
∞∑

n=0

(rL)n

n!
|n−〉. (13)

Hence by setting 〈n−|∈ T ∗ such that 〈n−|m−〉 = n!δnm, and taking 〈ϕ|= 〈1−|, we arrive at the
formula for rL as a matrix element of UV in this representation:

rL = 〈1−|UV (τ,−∞)|0−〉. (14)

Note that there are similar expressions for arbitrary powers of rL—from equation (13) we
have

rL
n = 〈n−|UV (τ,−∞)|0−〉. (15)

This completes our construction for the left-reflection coefficient, raised to any power.

2.3. Construction for the local statistical properties

Expressions for the left-reflection coefficient alone are not sufficient to calculate all the local
properties of the wire. However, the local Green’s functions for a one-dimensional wire at
point τ can be written in terms of the reflection amplitudes for a left-moving and right-moving
electron at that point [8],

GR(τ) = (1 + rL(τ ))(1 + rR(τ ))

i(1 − rR(τ )rL(τ ))
. (16)
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By expanding this expression in positive powers of the reflection amplitudes, it follows that
all local properties of the system (and their moments) can be written as infinite sums of terms
of the form rL

nr∗
L

n̄rR
mr∗

R
m̄, for n, n̄,m, m̄ ∈ N0.

The representation we constructed in the previous section gives expressions for rn
L in

terms of matrix elements of UV . We require similar expressions for the complex conjugate,
r∗
L

n. To find the appropriate representation, we make use of the algebra automorphism:

L0 → −L0, L+ → L−, L− → L+. (17)

In the natural representation of u(1, 1), this automorphism has the effect of swapping the
channel indices, 1 ↔ 2. From equations (5) and (8), this maps rL into r∗

L:

rL = (UV )12

(UV )22
	−→ (UV )21

(UV )11
= r∗

L. (18)

Using this algebra automorphism, we obtain from T −
0 a new representation, which we

denote by T +
0 . This representation is generated by highest weight vector |0+〉, such that

L0|0+〉 = L+|0+〉 = I|0+〉 = 0, L−|0+〉 �= 0.

Similar to the above, we set |n+〉 = (L−)n|0+〉, 〈n+ | m+〉 = n!δnm, and obtain the result

(r∗
L)n = 〈n+|UV (τ,−∞)|0+〉. (19)

It follows that any product rL
nr∗

L
n̄ can be expressed as a matrix element of the evolution

operator in the tensor-product representation, T −
0 ⊗ T +

0 :

rL
nr∗

L
n̄ = 〈n− ⊗ n̄+|UV (τ,−∞)|0− ⊗ 0+〉. (20)

To get an analogous expression for the right reflection amplitude, we note that the
transformation x → −x combined with swapping the order of the channels in the wire,
swaps the right and left reflection amplitudes. Hence,

(rR)n = 〈n−|(σxUV (τ,∞)σx)|0−〉 (21)

(r∗
R)n = 〈n+|(σxUV (τ,∞)σx)|0+〉. (22)

So powers of the right reflection amplitude can be obtained from the same representations T −
0

and T +
0 .

We are now in a position to write an arbitrary product of reflection coefficients in terms
of matrix elements of UV in the representation T −

0 ⊗ T +
0 :

rL
nr∗

L
n̄
rR

mr∗
R

m̄ = (〈n− ⊗ n̄+|UV (τ,−∞)|0− ⊗ 0+〉)
× (〈m− ⊗ m̄+|(σxUV (τ,∞)σx)|0− ⊗ 0+〉). (23)

Since the intervals (−∞, τ ) and (τ,∞) are disjoint and the disorder is delta correlated, the
individual matrix elements are statistically independent and can be averaged seperately.

As was noted above, all local properties of the system (and their moments) can be written as
infinite sums of these expressions, which means that the representation T −

0 ⊗T +
0 is appropriate

for the set of local properties. In fact, from the form of the Green’s function (16), it follows
that for any n, n̄,m, m̄, the term rL

nr∗
L

n̄rR
mr∗

R
m̄ will occur in the expansion of some product

of retarded and advanced Green’s functions. Since the states |n−〉⊗ |n̄+〉 span the whole of
T −

0 ⊗ T +
0 , this implies that the space we have constructed is minimal for the local statistical

properties of the wire, in the sense defined above.
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2.4. Averaging

Now that we have constructed the space T −
0 ⊗ T +

0 , we show how to average the evolution
operator UV on this space. Averaging equation (3) with the probability distribution given in
(4), we obtain an equation for the averaged evolution operator, Uav,

dUav

dτ
= 1

2
〈(−iσ3V )2〉Uav (24)

1

2
〈(−iσ3V )2〉 = − 1

4lf

(
L2

0 + I2
)

+
1

4lb
(L+L− + L−L+) =: Hav. (25)

The triangular brackets denote averaging2. Moments of reflection amplitudes are given by
matrix elements of Uav, in the form of equation (23).

Under the assumption of strong forward scattering lf → 0, all eigenstates of L0 with non-
zero eigenvalue are killed by Uav, because of the presence of lf

−1L0
2 in the first term of Hav.

We can therefore restrict our attention to the eigenspace of L0 with zero eigenvalue—i.e. the
space spanned by |n⊗〉 :=|n−〉⊗|n+〉, n � 0. This is natural since expressions of the form (23)
with states from this subspace correspond to products |rL|2n|rR|2m, which are exactly those
unaffected by averaging over the phase of rL and rR . In section 3.1 we use the operator Uav to
reproduce Berezinskii’s recursion relation for the moments of the left reflection probability,
Rm := 〈|rL |2m〉.

On the zero-weight subspace, Hav is proportional to the Casimir operator of u(1, 1),
hence its spectrum can be obtained from the decomposition of the tensor product T −

0 ⊗ T +
0

into irreducible representations. The decomposition contains the full primary series of
representations, Tρ (see [7], sections 6 and 8), each of which has an intersection with the
zero-weight subspace. On Tρ , the Casimir operator takes the value −1/4 − ρ2 (which means
all these modes decay under the action of Uav). In addition there is a state |ι〉 in the zero-weight
subspace given by

|ι〉 =
∞∑

n=0

1

n!
|n⊗〉 (26)

which corresponds to perfect reflection (Rm ≡ 1), and gives an identity representation of
u(1, 1) (and so is left unaltered by Uav).

The spectral decomposition of the averaged evolution operator is apparent in many of
the integral formulae for statistical properties of a disordered wire (e.g. [2] equation (15), [9]
equation (64)), and is made explicit in our formalism.

3. Relation to the Berezinskii technique

In this section we construct a representation of u(1, 1) such that there is a correspondence
between the ‘left-hand part diagrams’ Berezinskii considers [3], and the action of the averaged
evolution operator (24) in this representation.

The representation in question is the tensor product of the representations T −
1/2

(representation with lowest weight 1/2) for the retarded sector, and T +
−1/2 (representation

with highest weight −1/2) for the advanced sector (cf the representations T −
0 and T +

0 obtained
in section 2).

2 It is important to remember that iσ3V should be treated as an operator on T −
0 ⊗ T +

0 , so (iσ3V )2 is the result of
applying this operator twice—it is not the square of the matrix in the natural representation.
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This representation can be realized as the orbit of the vacuum in a bosonic Fock space
representation, where elements of u(1, 1) are quadratic in the bosonic creation and annihilation
operators. The Fock space is generated by four species of boson—corresponding to left- and
right-moving particles (denoted by indices 1 and 2, respectively), in the retarded and advanced
sectors (denoted by indices R and A). Creation and annihilation operators are written as b†

and b: [
b†

ij , bkl

] = −δikδjl, i, k ∈ {R,A}, j, l ∈ {1, 2} (27)

such that on the vacuum, |0B〉,
b†

A1|0B〉 = bA2|0B〉 = bR1|0B〉 = b†
R2|0B〉 = 0. (28)

The action of u(1, 1) on this space is the sum of actions in the retarded and advanced sectors,
written as η → ηR + ηA for η ∈ u(1, 1), where

Ii = (
b†

i1bi1 + b†
i2bi2

)
, i ∈ {R,A} (29)

Li
0 = 1/2

(
b†

i1bi1 − b†
i2bi2

)
(30)

Li
+ = (

b†
i1bi2

)
(31)

Li
− = (

b†
i2bi1

)
. (32)

By considering the diagrams Berezinskii constructs as the timelines of retarded and
advanced bosons, one can relate terms in the averaged Hamiltonian (25) to the interaction
vertices in the diagrams. For example, the vertex (e) in figure 2 of Berezinskii’s paper
[3] corresponds to the term

(
b†

R1bR2b†
A2bA1

)
in the averaged Hamiltonian. In general the

relationship is not one–one: the term
(
b†

R1bR2b†
R2bR1

)
covers both vertices (b) and (c), and (b)

is also given by the term
(
b†

R1bR1b†
R1bR1

)
(this latter degeneracy can be removed by assigning

the lines in the diagrams a direction).
The correspondence between diagram vertices and terms in the averaged Hamiltonian

leads to a correspondence between the left-hand part diagrams and terms in the time-ordered
expansion of the averaged evolution operator applied to the vacuum,

Uav(τ,−∞)|0B〉. (33)

Further, the diagrams pertaining to Rm are those which have 2m retarded and 2m advanced
bosons at time τ , which corresponds to a final state,(

b†
R2bR1b†

A1bA2
)m|0B〉 = (

LR
+

)m(
LA

−
)m|0B〉. (34)

Compare this to the matrix element for Rm in the representation T −
0 ⊗ T +

0 from section 2:

Rm = 〈m⊗|Uav(τ,−∞)|0⊗〉 (35)

where

|m⊗〉 := (
Lm

−|0+〉) ⊗ (
Lm

+ |0−〉). (36)

However, Rm is not simply given by a matrix element of Uav in the bosonic representation
T −

1/2 ⊗ T +
−1/2. This is because some terms in the expansion of Uav(τ,−∞)|0〉 correspond to

diagrams containing loops, which must be discarded in Berezinskii’s technique. We have
shown that discarding these loop-containing diagrams is equivalent to a slight modification of
the representation of u(1, 1), from T −

1/2 ⊗ T +
−1/2 to T −

0 ⊗ T +
0 .
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3.1. Recursion relation for Rm

As a demonstration of the use of the construction of section 2.3, we now derive Berezinskii’s
equations for the left reflection amplitudes [3]. The equations relate the moments Rm =
〈|rL |2m〉 for consecutive m’s.

To reproduce Berezinskii’s equation we need to account for the fact that he considers the
evolution of the retarded and advanced Green’s functions at different energies—the retarded
Green’s function is at an energy ω greater than the advanced Green’s function. To do this we
add a term 2iωL(−)

0 to the averaged Hamiltonian Hav; the superscript (−) signifies that this
L0 operator acts only on the states in T −

0 —as this shift in energy only occurs in the retarded
sector—and is not the action of L0 in the tensor-product representation T −

0 ⊗ T +
0 . Since the

disorder statistics are position independent and the calculation is for an infinite wire, Rm will
be independent of τ , and so we have

0 = dRm

dτ
(37)

= d

dτ
〈m⊗|Uav(τ,−∞)|0⊗〉 (38)

=
∞∑

n=0

1

n!
〈m⊗|Hav|n⊗〉〈n⊗|Uav(τ,−∞)|0⊗〉 (39)

= 2iωmRm − 1

2lb
m2(Rm+1 − 2Rm + Rm−1) (40)

which is the required result (cf [3] equation (24)).

4. Relation to the supersymmetry technique

A supersymmetric Fock space for a one-dimensional wire has been developed in a series
of papers [4–6, 10]. Arbitrary combinations of Green’s functions have expressions which
are linear in matrix elements of the evolution operator acting on the Fock space, so the
supersymmetric treatment is appropriate for any set of statistical quantities, though it is not
minimal even for the full set. Below we quickly outline the construction of the supersymmetric
Fock space (for a more detailed exposition see [5]), and show that the space we constructed in
section 2.3 is isomorphic to a subspace of it (as a u(1, 1)-module).

We start with a supersymmetric operator algebra with four species of bosonic operators
(as for the Fock space constructed in section 3) and corresponding four species of fermionic
operators:

[
b†

ij , bkl

] = −δikδjl, i, k ∈ {R,A}, j, l ∈ {1, 2} (41){
c†ij , ckl

} = +δikδjl (42)

with all other (super-) commutators zero.
The Fock space, with vacuum |0S〉, is generated by this operator algebra and the conditions

b†
A1|0S〉 = bA2|0S〉 = bR1|0S〉 = b†

R2|0S〉 = 0 (43)

c†A1|0S〉 = cA2|0S〉 = cR1|0S〉 = c†R2|0S〉 = 0. (44)
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The Hamiltonian is

H = b†
ij (iσ3V )jlbil + iωib

†
ij σ3(j l)bil + (b → c) (45)

where summation over repeated indices is implied. The quantities ωR and ωA have
Im(ωR) > 0, Im(ωA) < 0 to ensure convergence of the expressions for the Green’s functions
in the Fock space. The presence of fermions makes the Hamiltonian non-Hermitian.

As has already been noted, iσ3V lies in the u(1, 1) algebra, so (ignoring the ω-term)
equation (45) defines an action of u(1, 1), which lifts to a representation of U(1, 1) on the
Fock space. Indeed, there is a natural action of the Lie super-algebra gl(4, 4) on the Fock
space, of which u(1, 1) is a sub-algebra. This structure is explained in detail in [11].

The action of u(1, 1) on the Fock space is the sum of actions on the retarded and advanced
sectors (as for the Bosonic Fock space representation in section (3)). On each sector the
actions of the operators I, L0, L−, L+ are given by

Ii = (
b†

i1bi1 + b†
i2bi2 + c†i1ci1 + c†i1ci1

)
(46)

Li
0 = 1/2

(
b†

i1bi1 − b†
i2bi2 + c†i1ci1 − c†i1ci1

)
(47)

Li
+ = (

b†
i1bi2 + c†i1ci2

)
(48)

Li
− = (

b†
i2bi1 + c†i2ci1

)
(49)

for i ∈ {R,A}. Considering the retarded-sector action on the vacuum, one finds that

LR
0 |0S〉 = LR

−|0S〉 = IR|0S〉 = 0 (50)

LR
+ |0S〉 = (

b†
R1bR2 + c†R1cR2

)|0S〉 �= 0 (51)

which are precisely the conditions defining the representation T −
0 above. Hence T −

0 sits in
the supersymmetric Fock space as the orbit of the vacuum in the retarded sector. Similarly
one finds that T +

0 is the orbit of the vacuum in the advanced sector. Therefore the minimal
space we constructed for the local properties of the wire is isomorphic to a subspace of the
supersymmetric Fock space, as representations of the dynamical algebra u(1, 1).

The Fock space used in section 3 is the bosonic subspace of the supersymmetric Fock
space. There the orbit of the vacuum under u(1, 1) turns out to be the representation
T −

1/2 ⊗ T +
−1/2. The presence of fermions in the supersymmetric Fock space slightly alters

the representation to T −
0 ⊗ T +

0 , which is the one shown in section 2 to be appropriate for
the local statistical properties of the wire. The rest of the supersymmetric Fock space is
unnecessary for calculations of these properties.

The observation that only a small sector of the Fock space can be reached from the vacuum
under the action of the Hamiltonian was observed in [4], and later used in [5, 6] to simplify
the calculation of local statistical properties of the one-dimensional Dirac Hamiltonian using
the supersymmetry technique.

We have shown how to construct the space T −
0 ⊗ T +

0 directly as a representation of the
dynamical algebra, bypassing the use of supersymmetry. We have also related this construction
to the Berezinskii technique.
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